A network socket is an endpoint of an inter-process communication flow across a computer network. Today, most communication between computers is based on the Internet Protocol; therefore most network sockets are Internet sockets.
A socket API is an application programming interface (API), usually provided by the operating system, that allows application programs to control and use network sockets. Internet socket APIs are usually based on the Berkeley sockets standard.
A socket address is the combination of an IP address and a port number, much like one end of a telephone connection is the combination of a phone number and a particular extension. Based on this address, internet sockets deliver incoming data packets to the appropriate application process or thread.
Contents |
An Internet socket is characterized by a unique combination of the following:
Within the operating system and the application that created a socket, the socket is referred to by a unique integer number called socket identifier or socket number. The operating system forwards the payload of incoming IP packets to the corresponding application by extracting the socket address information from the IP and transport protocol headers and stripping the headers from the application data.
In IETF Request for Comments, Internet Standards, in many textbooks, as well as in this article, the term socket refers to an entity that is uniquely identified by the socket number. In other textbooks[1], the socket term refers to a local socket address, i.e. a "combination of an IP address and a port number". In the original definition of socket given in RFC 147, as it was related to the ARPA network in 1971, "the socket is specified as a 32 bit number with even sockets identifying receiving sockets and odd sockets identifying sending sockets." Today, however, socket communications are bidirectional.
On Unix-like and Microsoft Windows based operating systems the netstat command line tool may be used to list all currently established sockets and related information.
There are several Internet socket types available:
There are also non-Internet sockets, implemented over other transport protocols, such as Systems Network Architecture (SNA).[2] See also Unix domain sockets (UDS), for internal inter-process communication.
Computer processes that provide application services are called servers, and create sockets on start up that are in listening state. These sockets are waiting for initiatives from client programs.
A TCP server may serve several clients concurrently, by creating a child process for each client and establishing a TCP connection between the child process and the client. Unique dedicated sockets are created for each connection. These are in established state, when a socket-to-socket virtual connection or virtual circuit (VC), also known as a TCP session, is established with the remote socket, providing a duplex byte stream.
A server may create several concurrently established TCP sockets with the same local port number and local IP address, each mapped to its own server-child process, serving its own client process. They are treated as different sockets by the operating system, since the remote socket address (the client IP address and/or port number) are different; i.e. since they have different socket pair tuples (see below).
For further details on TCP sockets, including other states of TCP sockets, see Transmission Control Protocol.
A UDP socket cannot be in an established state, since UDP is connectionless. Therefore, netstat does not show the state of a UDP socket. A UDP server does not create new child processes for every concurrently served client, but the same process handles incoming data packets from all remote clients sequentially through the same socket. This implies that UDP sockets are not identified by the remote address, but only by the local address, although each message has an associated remote address.
Communicating local and remote sockets are called socket pairs. Each socket pair is described by a unique 4-tuple consisting of source and destination IP addresses and port numbers, i.e. of local and remote socket addresses.[3][4] As seen in the discussion above, in the TCP case, each unique socket pair 4-tuple is assigned a socket number, while in the UDP case, each unique local socket address is assigned a socket number.
Sockets are usually implemented by an API library such as Berkeley sockets, first introduced in 1983. Most implementations are based on Berkeley sockets, for example Winsock introduced in 1991. Other socket API implementations exist, such as the STREAMS-based Transport Layer Interface (TLI).
Development of application programs that utilize this API is called socket programming or network programming.
1983 Berkeley sockets (also known as the BSD socket API) originated with the 4.2BSD Unix operating system (released in 1983) as an API. Only in 1989, however, could UC Berkeley release versions of its operating system and networking library free from the licensing constraints of AT&T's copyright-protected Unix.[5]
1987 Transport Layer Interface (TLI) was the networking API provided by AT&T UNIX System V Release 3 (SVR3) in 1987[6] and continued into Release 4 (SVR4).[7][8]
Other early implementations were written for TOPS-20[9] , MVS[9], VM[9], IBM-DOS (PCIP)[9][10] .
The socket is primarily a concept used in the Transport Layer of the Internet model. Networking equipment such as routers and switches do not require implementations of the Transport Layer, as they operate on the Link Layer level (switches) or at the Internet Layer (routers). However, stateful network firewalls, network address translators, and proxy servers keep track of active socket pairs. Also in fair queuing, layer 3 switching and quality of service (QoS) support in routers, packet flows may be identified by extracting information about the socket pairs. Raw sockets are typically available in network equipment, and used for routing protocols such as IGMP and OSPF, and in Internet Control Message Protocol (ICMP).
|